

Teaching Plan

For

Session: 2021 - 2022

Head of the Department, Chemistry

Morigaon College

For TDC Ist Semester Honours

Paper: CHE-HC-1016: INORGANIC CHEMISTRY-I; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed	Remark
Dr. Murshid	AtomicStruct ure	Bohr'stheory,itslimitationsandatomicspectrumofhydr ogenatom. Wavemechanics: de Broglieequation, Heisenberg's UncertaintyPrincipleandits significance, Schrödinger'swaveequation,significanceof\(\psi\) and\(\psi\) antumnumbersandtheirsignificance. Normalizedandor thogonalwavefunctions. Signofwavefunctions. Radial and angular wavefunctions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and forbitals. Contourboundary and probability diagrams. P auli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with a tomic number.	1.10.2021 to 30.10.2021 (14Lectures)	Class test on 23.10.2021
Iman	Periodicityof Elements	 s,p,d,fblockelements,thelongformofperiodictable.Deta ileddiscussionofthefollowingpropertiesoftheelements ,withreferencetos&p-block. (a) Effectivenuclearcharge,shieldingorscreeningeffe ct,Slaterrules,variationofeffectivenuclearchargeinperi odictable. (b) Atomicradii(vanderWaals) (c) Ionicandcrystalradii. (d) Covalentradii(octahedralandtetrahedral) (e) Ionizationenthalpy,Successiveionizationenthalp iesandfactorsaffectingionizationenergy.Applicationso fionizationenthalpy. (f) Electrongainenthalpy,trendsofelectrongainenth alpy. 	1.11.2021 to 23.11.2021 (16Lectures)	Class test on 20.11.2021

	dipoleinteractions, induced dipoleinteractions, Instant aneous dipole-induced dipoleinteractions. Repulsive forces, Hydrogen bonding (theories of hydrogen bonding, valence bondtreatment) Effects of chemical force, meltin gand boiling points, solubility energetics of dissolution process.		
Oxidation- Reduction	Redoxequations, Standard Electrode Potential and its application to inorganic reactions. Principles involved involumetric analysis to be carried out in class.	28.12.2021 to 31.12.2021 (4Lectures)	Class test on 4.01.2022

Paper: INORGANIC CHEMISTRY-I: LAB; 60 Lectures

Name of	Unit	Content	Aims to be	Remarks
Faculty			completed	
	TitrimetricAnal	(i) Calibrationanduseofcommonlaboratoryapparatus		
	ysis	(ii) PreparationofsolutionsofdifferentMolarity/Normalityoftitrants		
		(i) Estimationofcarbonateandhydroxidepresenttogetherinmixture.		
	Acid-	(ii)	1.10.2021	
Dr. Murshid	BaseTitrations	Estimationofcarbonateandbicarbonatepresenttogetherinamixture.	to	
Iman		(iii) Estimationoffreealkalipresentindifferentsoaps/detergents	31.12.2021	
IIIIaII		(i)	(60	
	Oxidation-	EstimationofFe(II)andoxalicacidusingstandardizedKMnO4solution.	Lectures)	
	ReductionTitri	(ii) Estimationofoxalicacidandsodiumoxalateinagivenmixture.		
	metry	(iii) Estimation of Fe(II) with K2Cr2O7 using		
		internal(diphenylamine,anthranilicacid)andexternalindicator.		

Paper: CHE-HC-1026: PHYSICAL CHEMISTRY I; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed	Remarks
Dr. Arunima Sarma	Gaseous state	Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence, relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root meansquare and most probable) and average kinetic energy. Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure for different gases. Causes of deviation from ideal behaviour. Van der Waals equation of state, its derivation and application in explaining real gas behaviour,mention of other equations of state (Berthelot, Dietrici); virial equation of state; van der Waals equation expressed in virial form and calculation of Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms, continuity of states, critical state, relation between critical constants and van der Waals constants, law of corresponding states.	1.10.2021 to 2.11.2021 (18 Lectures)	Class test on 30.10.2021
	Liquidstate	Qualitativetreatmentofthestructureoftheliquidstate; Radialdistri butionfunction; physical properties of liquids; vapour pressure, surface tension and coefficient of viscosity, and their determination. Effect of addition of various solutes on surface tension and viscosity. Explanation of cleansing action of detergents. Temperature variation of viscosity of liquids and comparison with that of gases. Qualitative discussion of structure of water.	3.11.2021 to 13.11.2021 (6Lectures)	Class test on 20.11.2021
	MolecularandCr ystalSymmetry	Elementaryideasofsymmetry,symmetryelementsandsymmetryo perations,qualitativeideaofpointandspacegroups,sevencrystalsy stemsandfourteenBravaislattices.	15.11.2021 to 22.11.2021 (6Lectures)	
	Solidstate	Natureofthesolidstate,lawofconstancyofinterfacialangles,lawofra	23.11.2021 to	

	tionalindices, Millerindices,; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl.Defectsincrystals. Liquidcrystals (Introductoryidea) Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids (exacttreatment). Salt hydrolysis-calculation of hydrolysis constant, degree of	6.12.2021 (10 Lectures)	
Ionicequilibria	hydrolysis and pH for differentsalts.Buffersolutions;derivationofHendersonequationan ditsapplications;buffercapacity,buffer range, buffer action and applications of buffers in analytical chemistry andbiochemicalprocessesinthehumanbody. Solubilityandsolubilityproductofsparinglysolublesalts—applicationsofsolubilityproductprinciple. Qualitative treatment of acid — base titration curves (calculation of pH at variousstages).Theoryofacid—baseindicators;selectionofindicatorsandtheirlimitations. Multistageequilibriainpolyelectrolytesystems;hydrolysisandhydrol ysisconstants.	7.12.2021 to 30.12.2021 (20Lectures)	Class test on 31.12.2021

Paper: PHYSICAL CHEMISTRY I: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed
	Surfacetensionmeasure ments	a) Determinethesurfacetensionby(i)dropnumber(ii)dropweightmethod. b) Studythevariationofsurfacetensionofdetergentsolutionswithconcentration.	
Dr. Arunima	Viscosity measurement using Ostwald's viscometer	a) Determinationofviscosityofaqueoussolutionsof(i)polymer(ii)ethanoland (iii) sugaratroomtemperature.b) Studythevariationofviscosityofsucrosesolutionwiththeconcentrationofsolute.	1.10.2021 to 31.12.2021
Sarma	Indexingofagivenpowde rdiffractionpatternofac ubiccrystallinesystem		(60 Lectures)
	pHmetry	a)	

StudytheeffectonpHofadditionofHCl/NaOHtosolutionsofaceticacid,sodiumacetat eandtheirmixtures. b) PreparationofbuffersolutionsofdifferentpH	
(i) Sodiumacetate-aceticacid (ii) Ammoniumchloride-ammoniumhydroxide	
c) pHmetrictitrationof(i)strongacidvs.strongbase,(ii)weakacidvs.strongbase. d) Determinationofdissociationconstantofaweakacid.	

For TDC IIIrd Semester Honours

Paper: CHE-HC-3016: INORGANIC CHEMISTRY-II; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed	Remarks
	GeneralPrinciplesof Metallurgy	Chief modes of occurrence of metals based on standard electrode potentials. Ellinghamdiagramsforreductionofmetaloxidesusingcarbonandcarbonmonoxid easreducingagent. Electrolytic Reduction, Hydrometallurgy. Methods of purification of metals: ElectrolyticKrollprocess, Partingprocess, van Arkelde Boerprocess and Mond's process, Zonerefining.	1.10.2021 to 8.10.2021 (6Lectures)	
	AcidsandBases	Brönsted-Lowryconceptofacid- basereactions, solvated proton, relatives trength of acids, types of acid- basereactions, levellings olvents, Lewis acid- base concept, Classification of Lewis acids, Hardand Soft Acids and Bases (HSAB) Ap plication of HSAB principle.	9.10.2021 to 28.10.2021 (8Lectures)	
Dr. Murshid Iman	Chemistryofsandp BlockElements	Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complexformationtendencyofsandpblockelements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate andnitrate. Studyofthefollowingcompoundswithemphasisonstructure, bonding, preparatio n, properties and uses. Boricacidand borates, boronnitrogen compounds, boranes, carboranes and graphitic compounds, silanes, oxides and oxoacids of nitrogen, pho sphorus and chlorine. Peroxoacids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogen sandbasic properties of halogens.	29.10.2021 to 10.12.2021 (30Lectures)	Class test on 30.10.2022
	NobleGases	Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF2, XeF4 and XeF6; Nature of bonding in noble gas compounds (Valencebond treatment and MO treatment for XeF2). Molecular shapes of noble gas compounds (VSEPRtheory).	11.12.2021 to 20.12.2021 (8Lectures)	
	InorganicPolymers	Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspectsandapplicationsofsiliconesandsiloxanes. Silicates-claysandzeolites, polyphosphazenes, metalorganic framework compounds (MOFs).	21.12.2021 to 30.12.2021 (8Lectures)	Class test on 31.12.2021

Paper: INORGANIC CHEMISTRY-II: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to complete
	Iodo/IodimetricTitra	(i)	
	tions	EstimationofCu(II)andK2Cr2O7usingsodiumthiosulphatesolution(Iodi	
		metrically).	
		(ii) Estimationof(i)arseniteand(ii)antimonyintartar-emeticiodimetrically	1.10.2021 to
Dr. Murshid Iman		(iii) Estimationofavailablechlorineinbleachingpowderiodometrically.	31.12.2021
	Inorganicpreparatio	(i) Cuprous Chloride, CuCl	(60 Lectures)
	ns	(ii) Preparation of manganese(III) phosphate, MnPO4.H2O	
		(iii) Preparation of aluminium potassium sulphate KAl(SO4)2.12H2O (Potash alum) or	
		Chrome alum.	

Paper: CHE-HC-3026: ORGANIC CHEMISTRY-II; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of	Unit	Content	Aims to be	Remarks
Faculty			completed	
Dr. Swagata Baruah	Chemistry of Halogenated Hydrocarbons	Alkyl halides: Methods of preparation, nucleophilic substitution reactions – SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination. Aryl halides: Preparation, including preparation from diazonium salts. nucleophilic aromatic substitution; SNAr, Benzyne mechanism. Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions. Organometallic compounds of Mg and Li – Use in synthesis of organic compounds.	1.10.2021 to 30.10.2021 (16 Lectures)	Class test on 22.10.2021
	Alcohols, Phenols, Ethers and Epoxides	Alcohols: preparation, properties and relative reactivity of 1°,2°,3° alcohols, Bouveault-Blanc Reduction; Preparation and properties of glycols: Oxidation by periodic acid and lead tetraacetate, Pinacol-Pinacolone rearrangement; Phenols: Preparation and properties; Acidity and factors effecting it,	1.11.2021 to 25.11.2021 (16 Lectures)	Class test on 27.11.2021

	Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen rearrangements with mechanism; Ethers and Epoxides: Preparation and reactions with acids. Reactions of epoxides with alcohols, ammonia derivatives and LiAlH ₄		
Carbonyl Compounds	Preparation, properties, structure and reactivity; Nucleophilic additions, Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Mechanisms of Aldol and Benzoin condensation, Knoevenagel condensation, Claisan-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann and Benzil-Benzilic acid rearrangements, haloform reaction and Baeyer Villiger oxidation, α- substitution reactions, oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH ₄ , NaBH ₄ , MPV, PDC and PGC); Addition reactions of unsaturated carbonyl compounds: Michael addition. Active methylene compounds: Keto-enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.	26.11.2021 to 13.12.2021 (14 Lectures)	Class test on 18.12.2021
Carboxylic Acids and their Derivatives	Preparation, physical properties and reactions of monocarboxylic acids: Typical reactions of dicarboxylic acids, hydroxy acids and unsaturated acids: succinic/phthalic, lactic, malic, tartaric, citric, maleic and fumaric acids. Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic sustitution at acyl group - Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann and Reformatsky reactions, Hofmannbromamide degradation and Curtius rearrangement.	14.12.2021 to 24.12.2021 (10 Lectures)	
Sulphur containing compounds	Preparation and reactions of thiols, thioethers and sulphonic acids.	27.12.2021 to 30.12.2021 (4 Lectures)	Class test on 31.12. 2021

Paper: ORGANIC CHEMISTRY-II: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to be
			completed
Dr. Swagata	Test of functional	Test of functional groups like alcohols, phenols, carbonyl and carboxylic acid group	1.10.2021 to
Baruah	groups		31.12.2021

Organic preparations	i) Acetylationofoneofthefollowingcompounds:amines(aniline, o-, m-, ptoluidines o-, m-, p-anisidine) and phenols (β-naphthol, vanillin, salicylicacid) by anyonemethod: (a) Usingconventionalmethod. & (b) Usinggreenapproach ii) Benzolyation of one of the following amines (aniline, o-, m-, p- toluidinesando-, m-, p-anisidine) andoneofthefollowingphenols(β-naphthol, resorcinol, pcresol) by Schotten-Baumannreaction. iii) Oxidationofethanol/isopropanol(lodoformreaction). iii) Oxidationofethanol/isopropanol(lodoformreaction). iii) Oxidationofethanol/isopropanol(lodoformreaction). iii) Oxidationofethanol/isopropanol(lodoformreaction). iv) Brominationofanyoneofthefollowing: (a) Acetanilidebyconventionalmethods & (b) Acetanilideusinggreenapproach(Bromate-bromidemethod) v) Nitrationofanyoneofthefollowing: (a) Acetanilide/nitrobenzenebyconventionalmethod & (b) Salicylicacidbygreenapproach(usingcericammoniumnitrate). vi) Selectivereductionofmetadinitrobenzenetom-nitroaniline. vii) Reductionofp-nitrobenzaldehydebysodiumborohydride. viii) Hydrolysisofamidesandesters. ix) Semicarbazoneofanyoneofthefollowingcompounds:acetone,ethylmethylketone,cyc lohexanone,benzaldehyde. x) S- Benzylisothiouroniumsaltofoneeachofwatersolubleandwaterinsolubleacids(benzoi cacid,oxalicacid,phenylaceticacidandphthalicacid). xi) Aldolcondensationusingeitherconventionalorgreenmethod. xii) Benzil-Benzilicacidrearrangement. Theabovepreparationsshouldbedoneusing0.5- 1goftheorganiccompound.Thesolidsamplesmustbecollectedandmaybeusedforrecr ystallization,meltingpointandTLC.	(60 Lectures)
----------------------	--	---------------

Paper: CHE-HC-3036: PHYSICAL CHEMISTRY-III; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed
Dr. Arunima Sarma	Phase Equilibria	Concept of phases, components and degrees of freedom, derivation of Gibbs Phase Rule for nonreactive and reactive systems; Clausius-Clapeyron equation and its applications to solidliquid,liquid-vapour and solid-vapour equilibria, phase diagram for one component systems, with applications.	1.10.2021 to 18.11.2021 (28 Lectures)

Chemical Kinetics	Phase diagrams for systems of solid-liquid equilibria involving eutectic, congruent and incongruent melting points, solid solutions. Binary solutions: Gibbs-Duhem-Margules equation, its derivation and applications to fractional distillation of binary miscible liquids (ideal and nonideal), azeotropes, lever rule, partial miscibility of liquids, CST, miscible pairs, steam distillation. Nernst distribution law: its derivation and applications. Order and molecularity of a reaction, rate laws in terms of the advancement of a reaction, differential and integrated form of rate expressions up to second order reactions, experimental methods of the determination of rate laws, kinetics of complex reactions (integrated rate expressions up to first order only): (i) Opposing reactions (ii) parallel reactions and (iii) consecutive reactions and their differential rate equations (iv) chain reactions. Temperature dependence of reaction rates; Arrhenius equation; activation energy. Collision theory of reaction rates, Lindemann mechanism, qualitative treatment of the theory of absolute reaction rates. Reaction mechanism- steady-state approximation and rate determining step approximation methods.	20.11.2021 to 13.12.2021 (18 Lectures)
Catalysis	Types of catalyst, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces; effect of particle size and efficiency of nanoparticles as catalysts. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis.	14.12.2021 to 22.12.2021 (8 Lectures)
Surface chemistry	Physical adsorption, chemisorption, adsorption isotherms, nature of adsorbed state.	23.12.2021 to 30.12.2021 (6 Lectures)

Paper: PHYSICAL CHEMISTRY-III: LAB; 60 Lectures

Name of	Unit	Content	Aims to be	
Faculty			completed	
	Critical solution	Determinationofcriticalsolutiontemperatureandcompositionofthephe		
	temperature and	nol-watersystemandtostudytheeffectofimpuritiesonit.		
	composition		4 40 2024 1-	
Dr. Arunima		Construction of the phase diagram using cooling curves or ignition	1.10.2021 to 31.12.2021	
Sarma	Phase equilibria	tube method:	(60 Lectures)	
		(a) simple eutectic and (b) congruently melting systems.	(oo Lectures)	
		Distributionofacetic/benzoicacidbetweenwaterandcyclohexane.		
	Equilibrium	Studytheequilibriumofatleastoneofthefollowingreactions		

	bythedistributionmethod:	
	$(i)I2(aq)+I\rightarrow I3(aq)2+$	
	(ii)Cu2+(aq)+ n NH3 \rightarrow Cu(NH3) n	
	Studythekineticsofthefollowingreactions.	
	(a) Initialratemethod:Iodide-persulphatereaction	
	(b) Integratedratemethod:	
Kinetics	(i) Acidhydrolysisofmethylacetatewithhydrochloricacid.	
Killetics	(ii) Saponificationofethylacetate.	
	(c)	
	ComparethestrengthsofHClandH2SO4bystudyingkineticsofhydr	
	olysisofmethylacetate.	
Adsorption	VerifytheFreundlichandLangmuirisothermsforadsorptionofaceticacid	
Ausoi puon	onactivatedcharcoal.	

$\textbf{CHE-SE-3034:} \textbf{BASICANALYTICALCHEMISTRY} (\textbf{Credits: Theory-04, Practicals-02}) \ \textbf{Theory: 60 Lectures}$

Name of Faculty	Unit	Content	Aims to be	Remarks
			completed	
	Introduction	IntroductiontoAnalyticalChemistryanditsinterdisciplinarynature .Conceptofsampling.Importanceofaccuracy,precisionandsource soferrorinanalyticalmeasurements. Presentation of experimental data and results, from the point of view of significant figures.	1.10.2021 to 29.10.2021 (10 lecturers)	
Dr. Arunima Sarma	Analysisofsoil	Compositionofsoil,ConceptofpHandpHmeasurement,Complexo metrictitrations,Chelation,Chelatingagents,useofindicators a. DeterminationofpHofsoilsamples. b. EstimationofCalciumandMagnesiumionsasCalciumcarbon atebycomplexometrictitration.	30.10.2021 to 20.11.2021 (9 lecturers)	Class test on 17.11.2021
	Analysisofwater	(Definitionofpurewater,sourcesresponsibleforcontaminatingwa ter,watersamplingmethods,waterpurificationmethods. a. DeterminationofpH,acidityandalkalinityofawatersample. b. Determinationofdissolvedoxygen(DO)ofawatersample.	22.11.2021 to 8.12.2021 (8 lecturers)	
	Analysisoffoodprod ucts	Nutritionalvalueoffoods,ideaaboutfoodprocessingandfood preservationsandadulteration. a. Identificationofadulterantsinsomecommonfooditemslikecoff	10.12.2021 to 22.12.2021 (8 lecturers)	

	eepowder,asafoetida,chillipowder,turmericpowder,corianderpo wderandpulses,etc. Analysisofpreservativesandcolouringmatter.		
Chromatography	Definition,generalintroductiononprinciplesofchromatography,pap erchromatography,TLCetc. a. Paperchromatographicseparationofmixtureofmetalion(Fe3+andAl3+). b. TocomparepaintsamplesbyTLCmethod.	24.12.2021 to 3.1.2022 (5 lecturers)	Class test on 29.12.2021
Ion exchange	Column,ion-exchangechromatographyetc. Determinationofionexchangecapacityofanion/cationexchangere sin(usingbatchprocedureifuseofcolumnisnotfeasible).	5.01.2022 to 10.01.2022 (4 lecturers)	
Analysisofcosmetics	 Majorandminorconstituentsandtheirfunction a. Analysisofdeodorantsandantiperspirants, Al, Zn, boricacid, chloride, sulphate. b. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, ZincoxideandCalciumcarbonatebycomplexometrictitration. 	21.1.2022 to 7.02.2022 (8 lecturers)	
SuggestedApplications(Anyone)	a. Tostudytheusesofphenolphthaleinintrapcases.b. Toanalyzearsonaccelerants.c. Tocarryoutanalysisofgasoline.	9.02.2022 to 11.02.2022 (2 lecturers)	Class test on 9.02,2022
SuggestedInstrumen taldemonstrations	 a. Estimationofmacronutrients:Potassium,Calcium,Magne siuminsoilsamplesbyflamephotometry. b. SpectrophotometricdeterminationofIroninVitamin/DietaryTa blets. SpectrophotometricIdentificationandDeterminationofCaffeineandBe nzoicAcidinSoftDrink. 	12.02.2022 to 21.02.2022 (6 lecturers)	

For TDC Vth Semester Honours

Paper: CHE-HC-5016: ORGANIC CHEMISTRY-IV; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed	Remarks
	Nucleic Acids	Components of nucleic acids; Nucleosides and nucleotides; Synthesis and reactions of: Adenine, Guanine, Cytosine, Uracil and Thymine; Polynucleotides: DNA and RNA	1.10.2021 to 22.10.2021 (9 Lectures)	
Dr. Swagata	Amino Acids, Peptides and Proteins	Amino acids, Peptides and their classification. α -Amino Acids - Synthesis, ionic properties and reactions. Zwitterions, pKa values, isoelectric point and electrophoresis;Study of peptides: determination of their primary structures-end group analysis, methods of peptide synthesis. Synthesis of peptides using N-protecting, C-protecting and C-activating groups -Solid-phase synthesis	23.10.2021 to 15.11.2021 (16 Lectures)	Class test on 13.11.2021
	Enzymes	Introduction, classification and characteristics of enzymes. Salient features of active site of enzymes. Mechanism of enzyme action (taking trypsin as example), factors affecting enzyme action, coenzymes and cofactors and their role in biological reactions, specificity of enzyme action (including stereospecificity), enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive and non-competitive inhibition including allosteric inhibition).	16.11.2021 to 26.11.2021 (8 Lectures)	
Baruah	Lipids	Introduction to oils and fats; common fatty acids present in oils and fats, Hydrogenntion of fats and oils, saponification value, acid value, iodine number, rancidity.	27.11.2021 to 4.12.2021 (6 Lectures)	
	Concept of Energy in Biosystems	Cells obtain energy by the oxidation of foodstuff (organic molecules). Introduction to metabolism (catabolism, anabolism). ATP: The universal currency of cellular energy, ATP hydrolysis and free energy change. Agents for transfer of electrons in biological redox systems: NAD+, FAD. Conversion of food to energy: Outline of catabolic pathways of carbohydrate-glycolysis, fermentation, Krebs cycle. Overview of catabolic pathways of fat and protein. Interrelationship in the metabolic pathways of protein, fat and carbohydrate. Calorific value of food, standard calorie content of food types.	6.12.2021 to 15.12.2021 (9 Lectures)	Class test on 18.12.2021

Pharmaceut	Classification, structure and therapeutic uses of antipyretics: Paracetamol		
cal	(with synthesis), Analgesics: Ibuprofen (with synthesis), Antimalarials:	16.12.2022 to	
Compounds	Chloroquine (with synthesis). An elementary treatment of Antibiotics and	30.12.2022	
Structure and	detailed study of chloramphenicol, Medicinal values of curcumin (turmeric),	(12 Lectures)	
Importance	azadirachtin (neem), vitamin C and antacid (ranitidine).		

Paper: ORGANIC CHEMISTRY-IV: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to complete
Dr. Swagata Baruah		Estimation of glycine by Sorenson's formalin method. Study of the titration curve of glycine. Estimation of proteins by Lowry's method. Study of the action of salivary amylase on starch at optimum conditions. Effect of temperature on the action of salivary amylase. Saponification value of an oil or a fat. Determination of Iodine number of an oil/ fat. Isolation and characterization of DNA from onion/ cauliflower/peas.	1.10.2021 to 31.12.2021 (60 Lectures)

Paper: CHE-HC-5026: PHYSICAL CHEMISTRY-V; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed	Remarks
Dr. Arunima Sarma	Quantum Chemistry	Postulates of quantum mechanics, quantum mechanical operators, Schrödinger equation and its application to free particle and "particle-in-abox" (rigorous treatment), quantization of energy levels, zero-point energy Extension to two and three dimensional boxes, separation of variables, degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wavefunctions. Vibrational energy of diatomic molecules and zero-point energy. Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component. Rigid rotator model of rotation of diatomic molecule. Schrödinger equation, transformation to spherical polar coordinates. Separation of variables.	1.10.2021 to 13.11.2021 (24 Lectures)	Class test on 12.11.2021

	Spherical harmonics. Discussion of solution. Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. Setting up of Schrödinger equation for many-electron atoms (He, Li). Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom). Chemical bonding: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H ₂ *. Bonding and antibonding orbitals. Qualitative extension to H ₂ . Comparison of LCAO-MO and VB treatments of H ₂ (only wavefunctions, detailed solution not required) and their limitations. Refinements of the two approaches (Configuration Interaction for MO, ionic terms in VB). Qualitative description of LCAO-MO treatment of homonuclear and heteronuclear diatomic molecules (HF, LiH). Localised and non-localised molecular orbitals treatment of triatomic (BeH ₂ , H ₂ O) molecules. Qualitative MO theory and its application to AH ₂ type molecules.		
Molecular Spectroscopy	Interaction of electromagnetic radiation with molecules and various types of spectra; Born- Oppenheimer approximation. Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution. Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration, concept of group frequencies. Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches. Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion. Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence, dissociation and predissociation, calculation of electronic transitions of polyenes using free electron model.	15.11.2021 to 15.12.2021 (24 Lectures)	Class test on 11.12.2021
Photochemistry	Characteristics of electromagnetic radiation, Lambert-Beer's law and its	16.12.2021 to	Class test on

limitations, physical significance of absorption coefficients. Laws, of	30.12.2021	31.12.2021
photochemistry, quantum yield, actinometry, examples of low and high	(12 Lectures)	
quantum yields, photochemical equilibrium and the differential rate of		
photochemical reactions, photosensitised reactions, quenching. Role of		
photochemical reactions in biochemical processes, photostationary states,		
chemiluminescence.		

Paper: PHYSICAL CHEMISTRY-V: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to complete
	UV/Visible spectroscopy	I. Study the 200-500 nm absorbance spectra of KMnO ₄ and $K_2Cr_2O_7$ (in 0.1 M H ₂ SO ₄) and determine the λ_{max} values. Calculate the energies of the two transitions in different units (J molecule ⁻¹ , kJ mol ⁻¹ , cm ⁻¹ , eV). II. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of $K_2Cr_2O_7$. III. Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UVspectra of organic compounds.	1 10 2021 to
Dr. Arunima Sarma	Colourimetry	I. Verify Lambert-Beer's law and determine the concentration of CuSO ₄ /KMnO ₄ /K ₂ Cr ₂ O ₇ in a solution of unknown concentration II. Determine the concentrations of KMnO ₄ and K ₂ Cr ₂ O ₇ in a mixture. III. Study the kinetics of iodination of propanone in acidic medium. IV. Determine the amount of iron present in a sample using 1,10-phenathroline. V. Determine the dissociation constant of an indicator (phenolphthalein). VI. Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide. VII. Analysis of the given vibration-rotation spectrum of HCl(g)	1.10.2021 to 31.12.2021 (60 Lectures)

Paper: CHE-HE-5026: ANALYTICAL METHODS IN CHEMISTRY; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be	Remarks
			completed	
Dr. Arunima	Qualitative and	Sampling, evaluation of analytical data, errors, accuracy and precision,	1.10.2021 to	
Sarma	quantitative	methods of their expression, normal law of distribution if indeterminate	22.10.2021	

	T	, , , , , , , , , , , , , , , , , , ,		1
	aspects of analysis	errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.	(5 Lectures)	
Dr. Murshid Iman	Optical methods of analysis	Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law. UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument; Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of metal complex composition using Job's method of continuous variation and mole ratio method. Infrared Spectroscopy: Basic principles of instrumentation (choice of source, monochromator & detector) for continuous wave and Fourier transform spectrometers; sampling techniques. Structure elucidation through interpretation of data. Effect and importance of isotope substitution. Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, and detector, choice of flame and Burner designs. Techniques of atomization and sample introduction. Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.	7.10.2021 to 10.01.2022 (25 Lectures)	Class test on 27.12.2021
Dr. Murshid Iman	Thermal methods of analysis	Theory of thermogravimetry (TG), basic principle of instrumentation. Techniques for quantitative estimation of Ca and Mg from their mixture.	11.01.2022 to 31.01.2022 (5 Lectures)	
Dr. Arunima Sarma	Electroanalytical methods	Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.	25.10.2021 to 17.11.2021 (10 Lectures)	
Dr. Swagata Baruah	Separation techniques	Solvent extraction: Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation. Technique of extraction: batch, continuous and counter current extractions. Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media. Chromatography: Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange. Development of chromatograms: frontal, elution and displacement methods.	5.10.2021 to 11.12.2021 (15 Lectures)	Class test on 8.01.2021

Qualitative and quantitative aspects of chromatographic method	s of analysis:
IC, GLC, GPC, TLC and HPLC.	
Stereoisomeric separation and analysis: Measurement of opt	ical rotation,
calculation of Enantiomeric excess (ee)/ diastereomeric excess (c	de) ratios and
determination of enantiomeric composition using NMR, Chiral	solvents and
chiral shift reagents. Chiral chromatographic techniques using ch	niral columns
(GC and HPLC).	
Role of computers in instrumental methods of analysis.	

Paper: ANALYTICAL METHODS IN CHEMISTRY: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to be completed
Dr. Swagata Baruah	Separation Techniques	 I. Chromatography: (a) Separation of mixtures (i) Paper chromatographic separation of Fe³⁺, Al³⁺, and Cr³⁺. (ii) Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the R_f values. (b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their R_f values. Chromatographic separation of the active ingredients of plants, flowers and juices by TLC 	_
Dr. Murshid Iman	Solvent Extractions	(i) To separate a mixture of Ni ²⁺ & Fe ²⁺ by complexation with DMG and extracting the Ni ²⁺ - DMG complex in chloroform, and determine its concentration by spectrophotometry. (ii) Solvent extraction of zirconium with amberliti LA-1, separation from a mixture of irons and gallium.	1.10.2021 to 10.01.2022 (60 Lectures)
Dr. Swagata Baruah		Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.	
		Determination of Na, Ca, Li in cola drinks and fruit juices using fame photometric techniques.	
Dr. Arunima Sarma	Analysis of soil	(i) Determination of pH of soil. (ii) Total soluble salt (iii) Estimation of calcium, magnesium, phosphate, nitrate	
	Ion exchange	(i) Determination of exchange capacity of cation exchange resins and anion exchange	

Dr. Murshid Iman		resins.	
		(ii) Separation of metal ions from their binary mixture.	
		(iii) Separation of amino acids from organic acids by ion exchange chromatography.	
		(i) Determination of <i>pKa</i> values of indicator using spectrophotometry.	
		(ii) Structural characterization of compounds by infrared spectroscopy.	
Dr. Arunima		(iii) Determination of dissolved oxygen in water.	
Sarma	Spectrophotometry	(iv) Determination of chemical oxygen demand (COD).	
		(v) Determination of Biological oxygen demand (BOD).	
		(vi) Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by	
		Job's method.	

Paper: CHE-HE-5066: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS; (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Name of Faculty	Unit	Content	Aims to be
			completed
Dr. Arunima Sarma	Introduction to spectroscopic methods of analysis	Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation.	5.10.2021 to 21.10.2021 (4 Lectures)
Dr. Arunima Sarma	Molecular spectroscopy	Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat, differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection. UV-Visible/ Near IR – emission, absorption, fluorescence and photoaccoustic. Excitation sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters,laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoaccoustic, fluorescent tags).	23.10.2021 to 7.12.2021 (16 Lectures)
	Separation	Chromatography: Gas chromatography, liquid chromatography, supercritical fluids,	4.10.2021 to

Dr. Swagata Baruah	techniques	Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis. Immunoassays and DNA techniques Mass spectroscopy: Making the gaseous molecule into an ion (electron impact, chemical ionization), Making liquids and solids into ions (electrospray, electrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).	8.12.2021 (16 Lectures)
Dr. Swagata Baruah Dr. Arunima Sarma	Elemental analysis	Mass spectrometry (electrical discharges). Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).	9.12.2021 to 24.12.2021 (8 Lectures)
Dr. Swagata Baruah	NMR spectroscopy	Principle, Instrumentation, Factorsaffecting chemical shift, Spincoupling, Applications.	13.12.2021 to 21.12.2021 (4 Lectures)
Dr. Arunima Sarma	Electroanalytical Methods	Potentiometry & Voltammetry	28.12.2021 to 6.01.2022 (4 Lectures)
Dr. Arunima Sarma	Radiochemical Methods		8.01.2022 to 22.01.2022 (4 Lectures)
Dr. Murshid Iman	X-ray analysis and electron spectroscopy (surface analysis)		1.10.2021 to 29.10.2021 (4 Lectures)

Paper: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS: LAB; 60 Lectures

Name of Faculty	Unit	Content	Aims to be
11011110 01 1 010 01103	U	00110110	111110 00 00

		completed
	1. Safety Practices in the Chemistry Laboratory	
	2.Determination of the isoelectric pH of a protein.	
	3.Titration curve of an amino acid.	
	4.Determination of the void volume of a gel filtration column.	
1. Dr. Arunima	5.Determination of a Mixture of Cobalt and Nickel (UV/Vis-spec.)	
Sarma,	6.Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)	
2.Dr. Murshid	7.IR Absorption Spectra (Study of Aldehydes and Ketones)	
Iman,	8.Determination of Calcium, Iron, and Copper in Food by Atomic Absorption	
3. Dr. Swagata Baruah	9.Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon tetrachloride)	
	10.Separation of Carbohydrates by HPLC	
	11.Determination of Caffeine in Beverages by HPLC	
	12.Potentiometric Titration of a Chloride-Iodide Mixture	4.40.0004.
	13.Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple	1.10.2021 to
	14.Nuclear Magnetic Resonance	10.01.2022
	15.Use of fluorescence to do "presumptive tests" to identify blood or other body fluids.	(60 Lectures)
	16.Use of "presumptive tests" for anthrax or cocaine	
	17.Collection, preservation, and control of blood evidence being used for DNA testing	
	18.Use of capillary electrophoresis with laser fluorescence detection for nuclear DNA	
	(Ychromosome only or multiple chromosome)	
	19.Use of sequencing for the analysis of mitochondrial DNA	
	20.Laboratory analysis to confirm anthrax or cocaine	
	21.Detection in the field and confirmation in the laboratory of flammable accelerants or explosives	
	22.Detection of illegal drugs or steroids in athletes	
	23.Detection of pollutants or illegal dumping	
	24. Fibre analysis	
	At least 10 experiments to be performed.	