DEPARTMENT OF MATHEMATICS

Course	Outcomes
MAT-HC-1016: Calculus	This course will enable the students to:
(including practical)	 Learn first and second derivative tests for relative extremum and apply the knowledge in problems in business, economics and life sciences. Sketch curves in a plane using its mathematical properties in different coordinate systems. Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas. Understand the calculus of vector functions and its use
MATHC 1026: Algebra	to develop the basic principles of planetary motion.
MAT-IIC-1020:Algebra	 Employ De Moivre's theorem in a number of applications to solve numerical problems. Learn about equivalent classes and cardinality of a set. Use modular arithmetic and basic properties of congruences.
	 Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. Learn about the solution sets of linear systems using matrix method and Cramer's rule.
MAT-HG-1016/ MAT-	The students who take this course will be able to:
RC-1016:Calculus	 Understand continuity and differentiability in terms of limits. Describe asymptotic behavior in terms of limits involving infinity. Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the function. Understand the importance of mean value theorems.
MAT-HG-1026: Analytic	This course will enable the students to:
Geometry	 Transform coordinate systems, conic sections. Learn polar equation of a conic, tangent, normal and related properties. Have a rigorous understanding of the concept of three dimensional coordinate systems. Understand geometrical properties of dot product, cross product of vectors.
MAT-HC-2016: Real	This course will enable the students to:
Analysis	 Understand many properties of the real line R, including completeness and Archimedean properties. Learn to define sequences in terms of functions from N

	to a subset of R.
	• Recognize bounded, convergent, divergent, Cauchy and
	monotonic sequences and to calculate their limit
	superior, limit inferior, and the limit of a bounded
	sequence.
MAI-HC-2020: Differential	I ne course will enable the students to:
Equations (including	• Learn Dasics of unferential equations and mathematical modeling
practical)	Formulate differential equations for various
P)	mathematical models.
	• Solve first order non-linear differential equations and
	linear differential equations of higher order using various techniques.
	• Apply these techniques to solve and analyze various
	mathematical models.
MAT-HG-2016/MAT-RC-	This course will enable the students to:
2016: Algebra	• Learn how to solve the cubic and biquadratic
	equations, also learn about symmetric functions of the
	roots for cubic and biquadratic
	• Employ De Molvre's theorem in a number of applications to solve numerical problems
	 Becognize consistent and inconsistent systems of linear
	equations by the row echelon form of the augmented
	matrix. Finding inverse of a matrix with the help of
	Cayley-Hamilton theorem
	• Recognize the mathematical objects that are groups,
	and classify them as abelian, cyclic and permutation
	groups, ring etc.
	• Learn about the concept of linear independence of
	vectors over a field, and the dimension of a vector
MAT-HG-2026: Discrete	After the course, the student will be able to:
Mathematics	• Understand the notion of ordered sets and maps
	between ordered sets.
	• Learn about lattices, modular and distributive lattices,
	sublattices and homomorphisms between lattices.
	• Become familiar with Boolean algebra, Boolean
	homomorphism, Karnaugh diagrams, switching
	circuits and their applications.
MAT-HC-3016: Theory of	This course will enable the students to:
Keal Functions	• Have a rigorous understanding of the concept of limit of a function.
	• Learn about continuity and uniform continuity of functions defined on intervals.
	Understand geometrical properties of continuous

	functions on closed and bounded intervals.
	• Learn extensively about the concept of differentiability
	using limits, leading to a better understanding for
	applications.
	• Know about applications of mean value theorems and
	Taylor's theorem.
MAT-HC-3026: Group	The course will enable the students to:
Theory - I	• Recognize the mathematical objects that are groups.
	and classify them as abelian, cyclic and permutation
	groups, etc.
	• Link the fundamental concepts of groups and
	symmetrical figures.
	• Analyze the subgroups of cyclic groups and classify
	subgroups of cyclic groups.
	• Explain the significance of the notion of cosets, normal
	subgroups and factor groups.
	• Learn about Lagrange's theorem and Fermat's Little
	theorem.
	• Know about group homomorphisms and group
	isomorphisms.
MAT-HC-3036:	This course will enable the students to:
Analytical Geometry	• Learn conic sections and transform co-ordinate
	systems
	• Learn polar equation of a conic, tangent, normal and
	properties
	• Have a rigorous understanding of the concept of three
	dimensional coordinates systems.
MAT-SE-3014: Computer	This course will enable the students to:
Algebra Systems and	• Use of softwares:
Related Software	Mathematica/MATLAB/Maxima/Maple etc. as a
	calculator, for plotting functions and animations
	• Use of CAS for various applications of matrices such as
	solving system of equations and finding eigenvalues
	and eigenvectors.
	• Understand the use of the statistical software R as
	calculator and learn to read and get data into R.
MAT-SE-3024:	This course will enable the students to:
Combinatorics and Graph	• Learn about the counting principles, permutations and
Theory	combinations, Pigeonhole principle
	• Understand the basics of graph theory and learn about
	social networks. Eulerian and Hamiltonian graphs.
	diagram tracing puzzles and Knight's tour problem.
MAT-HG-3016/MAT-RC-	The course will enable the students to:
3016: Differential	• Learn basics of differential equations and
Equations	mathematical modelling.

	• Solve first order non-linear differential equations and linear differential equations of higher order using various techniques.
MAT-HG-3026: Linear	This course will enable the students to:
Programming	 Learn about the graphical solution of linear programming problem with two variables. Learn about the relation between basic feasible solutions and extreme points. Understand the theory of the simplex method used to solve linear programming problems. Learn about two-phase and big-M methods to deal with
	problems involving artificial variables.
	• Learn about the relationships between the primal and dual problems.
	Solve transportation and assignment problems.
	• Apply linear programming method to solve two-person zero-sum game problems.
MAT-HC-4016:	This course will enable the students to:
Multivariate Calculus	 Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. Understand the maximization and minimization of multivariable functions subject to the given constraints Learn about inter-relationship amongst the line integral, double and triple integral formulations. Familiarize with Green's, Stokes' and Gauss divergence theorems.
MAT-HC-4026:	The course will enable the students to:
Numerical Methods (including practical)	 Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision. Know about methods to solve system of linear equations, such as False position method, Fixed point iteration method. Newton's method. Secant method
	and LU decomposition.
	 Interpolation techniques to compute the values for a tabulated function at points not in the table. Applications of numerical differentiation and integration to convert differential equations into
	difference equations for numerical solutions.
MAT-HC-4036: Ring Theory	 On completion of this course, the student will be able to: Appreciate the significance of unique factorization in rings and integral domains. Learn about the fundamental concept of rings, integral domains and fields.

	• Know about ring homomorphism and isomorphism theorems of rings
	theorems of rings.
	• Learn about the polynomial rings over commutative
	rings, integral domains, Euclidean domains, and UFD.
MAT-SE-4014: R	This course will enable the students to:
Programming	• Become familiar with R syntax and to use R as a
	calculator.
	• Understand the concepts of objects, vectors and data
	types.
	• Know about summary commands and summary table
	in R.
	• Visualize distribution of data in R and learn about
	normality test.
	Plot various graphs and charts using R.
MAT-SE-4024: LaTeX	After studying this course the student will be able to:
and HTML (practical)	Create and typeset a LaTeX document.
	Typeset a mathematical document using LaTex.
	Learn about pictures and graphics in LaTex.
	Create beamer presentations.
	Create web page using HTML.
MAT-HG-4016/ MAT-	This course will enable the students to:
RC-4016: Real Analysis	• Understand many properties of the real line R,
	including completeness and Archimedean properties.
	• Learn to define sequences in terms of functions from R
	to a subset of R.
	• Recognize bounded, convergent, divergent, Cauchy and
	monotonic sequences and to calculate their limit
	superior, limit inferior, and the limit of a bounded
	sequence.
	• Apply the ratio, root, alternating series and limit
	comparison tests for convergence and absolute
	convergence of an infinite series of real numbers.
MAT-HG-4026:	The course will enable the students to:
Numerical Analysis	• Learn some numerical methods to find the zeroes of
	nonlinear functions of a single variable and solution of
	a system of linear equations, up to a certain given level
	of precision.
	• Know about iterative and non-iterative methods to
	solve system of linear equations
	• Know interpolation techniques to compute the values
	for a tabulated function at points not in the table.
	• Integrate a definite integral that cannot be done
	analytically
	Find numerical differentiation of functional values
	• Solve differential equations that cannot be solved by

	analytical methods.
MAT-HC-5016: Complex	Completion of the course will enable the students to:
Analysis (including	• Learn the significance of differentiability of complex
practical)	functions leading to the understanding of
	Cauchy–Riemann equations.
	• Learn some elementary functions and can evaluate the
	contour integrals.
	• Understand the role of Cauchy–Goursat theorem and
	the Cauchy integral formula.
	• Expand some simple functions as their Taylor and
	Laurent series, classify the nature of singularities, find
	residues and apply Cauchy Residue theorem to
MAT-HC-5026. Linoar	The course will enable the students to:
Algebra	• Loarn about the concept of linear independence of
Algebra	vectors over a field and the dimension of a vector
	space.
	Basic concepts of linear transformations, dimension
	theorem, matrix representation of a linear
	transformation, and the change of coordinate matrix.
	• Compute the characteristic polynomial, eigenvalues,
	eigenvectors, and eigenspaces, as well as the geometric
	and the algebraic multiplicities of an eigenvalue and
	apply the basic diagonalization result.
	• Compute inner products and determine orthogonality
	on vector spaces, including Gram–Schmidt
	orthogonalization to obtain orthonormal basis.
	• Find the adjoint, normal, unitary and orthogonal
MAT HE 5016, Number	Operators. This course will enable the students to:
Theory	I have about some facting discoveries related to the
Theory	• Learn about some fascinating discoveries related to the properties of prime numbers, and some of the open
	properties of prime numbers, and some of the open problems in number theory viz Goldbach conjecture
	etc.
	• Know about number theoretic functions and modular
	arithmetic.
	• Solve linear, quadratic and system of linear congruence
	equations.
MAT-HE-5026:	The course will enable the students to:
Mechanics	• Know about the concepts in statics such as moments,
	couples, equilibrium in both two and three dimensions.
	• Understand the theory behind friction and center of
	gravity.
	• Know about conservation of mechanical energy and
	work-energy equations.

	• Learn about translational and rotational motion of rigid bodies.
MAT-HE-5036:	This course will enable the students to:
Probability and Statistics	• Learn about probability density and moment
· ·	generating functions.
	• Know about various univariate distributions such as
	Bernoulli, Binomial, Poisson, gamma and exponential
	distributions.
	• Learn about distributions to study the joint behavior of
	two random variables.
	 Measure the scale of association between two variables
	and to establish a formulation between two variables,
	variable in terms of the other i.e. correlation and
	linear regression
	Understand central limit theorem which helps to
	understand the remarkable fact that: the empirical
	frequencies of so many natural populations, exhibit a
	bell-shaped curve, i.e., a normal distribution.
MAT-HE-5046: Linear	This course will enable the students to:
Programming	• Learn about the graphical solution of linear
0 0	programming problem with two variables.
	• Learn about the relation between basic feasible
	solutions and extreme points.
	• Understand the theory of the simplex method used to
	solve linear programming problems.
	• Learn about two-phase and big-M methods to deal with
	problems involving artificial variables.
	• Learn about the relationships between the primal and
	dual problems.
	 Solve transportation and assignment problems.
	Apply linear programming method to solve two-person
	zero-sum game problems.
MAT-HE-5056: Spherical	This course will enable the students to:
Trigonometry and	• Learn about the properties of spherical and polar
Astronomy	triangles
	• know about fundamental formulae of spherical
	triangles
	• learn about the celestial sphere, circumpolar star, rate
	of change of zenith distance and azimuth
	• learn about Keplar's law of planetary motion, Cassini's
	nypothesis, differential equation for fraction.
MIA I -HE-5066:	After completion of this paper, student will be able to:
Frogramming in C (including prostical)	• Understand and apply the programming concepts of C
(including practical)	which is important to mathematical investigation and problem solving.

	• Learn about structured data-types in C and learn about applications in factorization of an integer and understanding Cartesian geometry and Pythagorean
	triples.
	• Use of containers and templates in various applications in algebra.
	• Use mathematical libraries for computational objectives.
	 Represent the outputs of programs visually in terms of well formatted text and plots
MAT-HC-6016: Riemann	The course will enable the students to:
Integration and Metric spaces	• Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration.
	• Know about improper integrals including, beta and gamma functions.
	• Learn various natural and abstract formulations of distance on the sets of usual or unusual entities. Become aware one such formulations leading to metric spaces.
	• Analyse how a theory advances from a particular frame to a general frame.
	• Appreciate the mathematical understanding of various geometrical concepts, viz. Balls or connected sets etc. in an abstract setting.
	• Know about Banach fixed point theorem, whose far- reaching consequences have resulted into an independent branch of study in analysis, known as fixed point theory.
	• Learn about the two important topological properties, namely connectedness and compactness of metric spaces.
MAT-HC-6026: Partial	The course will enable the students to:
Differential Equations	• Formulate, classify and transform first order PDEs
(including practical)	Into canonical form.
	of variables to solve first order PDE's.
	Classify and solve second order linear PDEs.
	• Learn about Cauchy problem for second order PDE and homogeneous as well as nonhomogeneous wave equations.
	• Apply the method of separation of variables for solving second order PDEs.
MAT-HE-6016: Boolean	The course will enable the students to:
Algebra and Automata	• Learn about the order isomorphism, Hasse diagrams,

Theory	building new ordered set.
	• Learn about the algebraic structure lattices, properties
	of modular and distributive lattices.
	• Get ideas about the Boolean algebra, Switching circuits
	and applications of switching circuits.
	• Appreciate the theory of automata and its applications.
MAT-HE-6026: Bio-	Apropos conclusion of the course will empower the student
Mathematics	
	• Learn the development, analysis and interpretation of big methometical models such as perpulation growth
	cell division and predator-prev models
	• Learn about the mathematics behind heartheat model
	and nerve impulse transmission model.
	• Appreciate the theory of bifurcation and chaos.
	• Learn to apply the basic concepts of probability to
	molecular evolution and genetics.
MAT-HE-6036:	The course will enable the students to:
Mathematical Modelling	• Know about power series solution of a differential
(including practical)	equation and learn about Legendre's and Bessel's
	equations.
	• Use of Laplace transform and inverse transform for
	solving initial value problems.
	• Learn about various models such as monte Carlo simulation models queuing models and linear
	programming models.
MAT-HE-6046:	The course will enable the students to:
Hydromechanics	Know about Pressure equation, rotating fluids.
	• Learn about Fluid pressure on plane surfaces, resultant
	pressure on curved surfaces, Gas law, mixture of gases
	• Learn about the Eulerian and Lagrangian method.
	• Learn about equation of continuity, examples,
	acceleration of a fluid at a point
MAT-HE-6056: Rigid	The course will enable the students to:
Dynamics	• Know how to find the moments and products of inartia
	Intertia.
	• Learn about the motion of the centre of merida
	Lagrange's equations
	 Learn about motion of a body in two dimension.
MAT-HE-6066: Group	The course shall enable students to:
Theory II	• Learn about automorphisms for constructing new
	groups from the given group.
	• Learn about the fact that external direct product
	applies to data security and electric circuits.
	• Understand fundamental theorem of finite abelian

 groups. Be familiar with group actions and conjugacy in S_n.
• Understand Sylow theorems and their applications in checking non-simplicity

FOUR YEAR UNDERGRADUATE PROGRAME (FYUGP)

MAT-0100104: Classical	This course will enable the students to:
Algebra (Core)	• Employ De Moivre's theorem in a number of applications to solve numerical problems.
	• Learn the basic concepts of exponential, logarithmic and hyperbolic functions of complex numbers.
	• Learn how to find the nature of the roots of a given polynomial equation by Descartes' rule, also learn about symmetric functions of the roots for cubic and biquadratic equations.
	• Learn how to solve cubic and biquadratic equations.
	• Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix. Finding inverse and rank of a matrix.
MDC-0100203:	This course will enable the students to:
Foundations of Mathematical Sciences- I	• Learn about numbers, conversion of decimal numbers in binary system and binary to decimal system.
	• Relate indices and logarithm /antilogarithm and learn about properties of logarithms.
	• Learn basic mathematical tools to solve real life problems.
	Know application of mathematical tools in decision making problems
	• Acquire the skill of statistical analysis of data from real life situation in a scientific manner.
	• Acquire knowledge on the basic aspects of statistical reasoning and drawing conclusions.
SEC-0101303: Basic	After completing this course, the students will be
programming in C	• Familiar with what a programming language is
	• Familiar with flowchart and pseudo code
	• Familiar with the constructs of C programming
	Iniguages
Calculus	The students who take this course will be able to
Curcurus	 Understand continuity and differentiability in terms of limits.

• Describe asymptotic behavior in terms of limits involving infinity.
• Understand the importance of mean value theorems.